Volume 3, Issue 2 (2024)                   GMJM 2024, 3(2): 53-57 | Back to browse issues page



Rights and permissions
1- Trauma and Emergency Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
2- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Iran
3- Young Researchers and Elite Club, Lahijan Branch, Islamic Azad University, Lahijan, Iran
* Corresponding Author Address: Lahijan Branch, Islamic Azad University, Lahijan, Iran. (omid.lakzaieazar@yahoo.com)
Abstract   (427 Views)
Aims: Diabetes has been known as a prevalence disorder and the use of common drugs has been faced many issues with multiple limitations. This study aimed to evaluate the use of carvacrol, as a novel agent, for treatment of diabetes.
Materials & Methods: In this experimental study, a single dose of streptozotocin (55mg/kg body weight) was used to induce the diabetes in rats. The animals were devided into 5 groups; healthy (negative control), diabetic (positive control), and diabetic given carvacrol in 5-, 10- and 15mg/kg body weight/day of carvacrol in neutral sterile olive oil solution. The levels of malondialdehyde, catalase, superoxide dismutase, and glutathione peroxidase (GPX) activities were evaluated. The levels of IL-1β, IL-6 and TNF-α expression in liver were assessed.
Findings: Streptozotocin increased the levels of malondialdehyde, IL-1β, IL-6 and TNF-α and also decreased activities of catalase, superoxide dismutase and glutathione peroxidase (p<0.05). Oral administration of carvacrol, especially 15mg/kg body weight/day, decreased the levels of malondialdehyde, IL-1β, IL-6 and TNF-α and also increased activities of catalase, superoxide dismutase and glutathione peroxidase in comparison to diabetic control (p<0.05).
Conclusion: Carvacrol decrease the negative effects of diabetes on inflammation and antioxidant status.

1. Kahraman C, Yümün G, Kahraman N, Namdar N, Cosgun S. Neutrophil-to-lymphocyte ratio in diabetes mellitus patients with and without diabetic foot ulcer. Eur J Med Sci. 2014;1(1):8-13. [Link] [DOI:10.12973/ejms.2014.102p]
2. Colhoun H, Schalkwijk C, Rubens M, Stehouwer C. C-reactive protein in type 1diabetes and its relationship to coronary artery calcification. Diabetes Care. 2002;25(10):1813-7. [Link] [DOI:10.2337/diacare.25.10.1813]
3. Hayaishi Okano R, Yamasaki Y, Katakami N, Ohtoshi K, Gorogawa S. Elevated C-reactive protein associates with early-stage carotid atherosclerosis in young subjects with type 1 diabetes. Diabetes Care. 2002;25(8):1432-8. [Link] [DOI:10.2337/diacare.25.8.1432]
4. Jialal I, Devaraj S, Venugopal S. Oxidative stress, inflammation and diabeticvasculopathies: The role of alpha tocopherol therapy. Free Radic Res. 2002;36(12):1331-6. [Link] [DOI:10.1080/1071576021000038531]
5. Ghaderian SB, Hayati F, Shayanpour S, Mousavi SSB. Diabetes and end-stage renal disease; A review article on new concepts. J Renal Inj Prev. 2015;4(2):28-33. [Link]
6. Magri CJ, Fava S. The role of tubular injury in diabeticnephropathy. Eur J Intern Med. 2009;20(6):551-5. [Link] [DOI:10.1016/j.ejim.2008.12.012]
7. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058-70. [Link] [DOI:10.1161/CIRCRESAHA.110.223545]
8. Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond). 2013;124(3):139-52. [Link] [DOI:10.1042/CS20120198]
9. Schmidt AM, Yan SD, Wautier JL, Stern DM. Activation of receptor for advanced glycation end products-a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res. 1999;84(5):489-97. [Link] [DOI:10.1161/01.RES.84.5.489]
10. Romano M, Pomilio M, Vigneri S, Falco A, Chiesa PL, Chiarelli F, et al. Endothelial perturbation in children and adolescents with type 1diabetes: Association with markers of the inflammatory reaction. Diabetes Care. 2001;24(9):1674-8. [Link] [DOI:10.2337/diacare.24.9.1674]
11. Eo H, Lee HJ, Lim Y. Ameliorative effect of dietary genistein on diabetes induced hyper-inflammation and oxidative stress during early stage of wound healing in alloxan induced diabetic mice. Biochem Biophys Res Commun. 2016;478(3):1021-7. [Link] [DOI:10.1016/j.bbrc.2016.07.039]
12. Rahimi R, Nikfar S, Larijani B, Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother. 2005;59(7):365-73. [Link] [DOI:10.1016/j.biopha.2005.07.002]
13. Amiri R, Akbari M. The role of carvacrol as active compound of essential oils in diabetes. Biomed J Sci Tech Res. 2018;11(1):8310-2. [Link] [DOI:10.26717/BJSTR.2018.11.002054]
14. Kirimer N, Baser KHC, Tumen G. Carvacrol rich plants in Turkey. Chem Nat Comp. 1995;31(1):37-42. [Link] [DOI:10.1007/BF01167568]
15. Berger JP, Akiyama TE, Meinke PT. PPARs: The rapeutic targets for metabolic disease. Trends Pharmacol Sci. 2005;26(5):244-51. [Link] [DOI:10.1016/j.tips.2005.03.003]
16. Kallistratos G, Evangelou A, Agnantis N, Fasske E, Karkabounas S, A Donos. Enhancement of the antineoplastic effect of anticarcinogens on benzo(a)pyrene-treated Wistar rats, in relation to their number and biological activity. Cancer Lett. 1994;82(2):153-65. [Link] [DOI:10.1016/0304-3835(94)90006-X]
17. Evangelou A, Kalpouzos G, Karkabounas S, Liasko R, Nonni A, Stefanou D, et al. Dose-related preventive and therapeutic effects of antioxidants-anticarcinogens on experimentally induced malignant tumors in Wistar rats. Cancer Lett. 1997;115(1):105-11. [Link] [DOI:10.1016/S0304-3835(97)04712-5]
18. Mansouri E, Panahi M, Ghaffari MA, Ghorbani A. Effects of grape seed proanthocyanidin extract on oxidative stress induced by diabetes in rat kidney. Iran Biomed J. 2011;15(3):100-6. [Link]
19. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochem. 1976;72:248-54. [Link] [DOI:10.1016/0003-2697(76)90527-3]
20. Khan HA, Abdelhalim MAK, Alhomida AS, Al Ayed MS. Transient increase in IL-1β, IL-6 and TNF-α gene expression in rat liver exposed to gold nanoparticles. Genet Mol Res. 2013;12(4):5851-7. [Link] [DOI:10.4238/2013.November.22.12]
21. Manna P, Ghosh J, Das J, Sil PC. Streptozotocin induced activation of oxidative stress responsive splenic cell signaling pathways: Protective role of arjunolic acid. Toxicol Appl Pharmacol. 2010:244(4);114-29. [Link] [DOI:10.1016/j.taap.2009.12.024]
22. Yang H, Jin X, Lam CWK, Yan SK. Oxidative stress and diabetes mellitus. Clin Chem LabMed. 2011;49:1773-82. [Link] [DOI:10.1515/cclm.2011.250]
23. Arulselvan P, Subramanian S. Ultra structural and biochemical abnormalities in the liver of streptozotocin-diabetic rats: Protective effects of Murraya koenigii. J Pharmacol Toxicol.2008;3(3):190-202. [Link] [DOI:10.3923/jpt.2008.190.202]
24. Saxena M, Modi D. Inflammation and diabetes. Interdiscip J Microinflammation. 2014;1(1):1-3. [Link]
25. Wu T, Dorn J, Donahue R, Sempos C, Trevisan M. Associations of serum C-reactive protein with fasting insulin, glucose, and glycosylated hemoglobin. Am J Epidemiol. 2002;155(1):65-71. [Link] [DOI:10.1093/aje/155.1.65]
26. Fichtlscherer S, Rosenberger G, Walter D, Breuer S, Dimmeler S, Zeiher A. Elevated C-reactive protein levels and impaired endothelial vasoreactivity in patients with coronary artery disease. Circulation.2000;102(9):1000-6. [Link] [DOI:10.1161/01.CIR.102.9.1000]
27. Ezhumalai M, Radhiga T, Viswanathan Pugalendi K. Antihyperglycemic effect of carvacrol in combination with rosiglitazone in high-fat diet-induced type 2 diabetic C57BL/6J mice. Mol Cell Biochem. 2014;385(1-2):23-31. [Link] [DOI:10.1007/s11010-013-1810-8]
28. Srinivasan S, Pari L. Ameliorative effect of diosmin, a citrus flavonoid against streptozotocin-nicotinamide generated oxidative stress induced diabetic rats. Chem Biol Interact. 2012;195(1):43-51. [Link] [DOI:10.1016/j.cbi.2011.10.003]
29. Erejuwa OO, Gurtu S, Sulaiman SA, Ab Wahab MS, Sirajudeen KNS, Md Salleh MS. Hypoglycemic andantioxidant effects of honey supplementation in streptozotocininduceddiabetic rats. Int J Vitamin Nutr Res. 2010:80(1);74-82. [Link] [DOI:10.1024/0300-9831/a000008]
30. Deng W, Lu H, Teng J. Carvacrol attenuates diabetes-associated cognitive deficits in rats. J Mol Neurosci. 2009;51(3):813-9. [Link] [DOI:10.1007/s12031-013-0069-6]
31. Nasirian F, Dadkhah M, Moradi Kor N, Obeidavi Z. Effects of Spirulina platensis microalgae on antioxidant and anti-inflammatory factors in diabetic rats. Diabetes Metab Syndr Obes. 2018;11:375-80. [Link] [DOI:10.2147/DMSO.S172104]
32. Mesbahzadeh B, Rajaei SA, Tarahomi P, Seyedinia SA, Rahmani M, et al. Beneficial effects of spirogyra neglecta extract on antioxidant and anti-inflammatory factors in streptozotocin-induced diabetic rats. Biomol Concepts. 2018;9(1):184-9. [Link] [DOI:10.1515/bmc-2018-0015]