Volume 2, Issue 2 (2023)                   GMJM 2023, 2(2): 63-67 | Back to browse issues page
Article Type:
Original Research |
Subject:

Print XML PDF HTML


History

How to cite this article
Jazideh F, Tarkhnishvili E, Hashemi Feyzabadi S. Effects of Olea europaea L. Extract on Inflammatory Gene Expressions in Infected Wound Healing Process in Mice Model. GMJM 2023; 2 (2) :63-67
URL: http://gmedicine.de/article-2-226-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Department of Medical Research, Institute for Intelligent Research, Tbilisi, Georgia
2- Semnan University of Medical Sciences, Semnan, Iran
* Corresponding Author Address: (hashemi.slc@gmail.com)
Abstract   (453 Views)
Aims: Natural antimicrobial agents can decrease the risk of infection during wound healing. Olea europaea L. is an anti-inflammatory agent that can be used this way. This study was conducted for the first time to evaluate the effects of ointments prepared from olive leaf extract on inflammatory gene expressions in a mouse model's infected wound healing process.
Materials & Methods: We created two circular full-thickness wounds on the dorsal inter-scapular part of per mouse by a 5 mm biopsy punch and infected with Staphylococcus aureus and Pseudomonas aeruginosa. Following induction of infection, animals were treated with mupirocin (mupirocin group) and basal ointments containing 2.5% and 5% of the extract (2.5% & 5% OLE). A control group was also considered. We selected five mice per group, and samples were collected on days 3, 7, and 14 to investigate the total bacterial count and gene expressions.
Findings: The control group significantly showed higher wound area, total bacterial count, and higher expressions of IL-1β and TNF-α (p<0.05) and lower expressions for IL-10 and TGF-β (p<0.05). The treatment with OLE could significantly decrease wound area, total bacterial count, and expressions of IL-1β and TNF-α and increase the expression of IL-10 and TGF-β (p<0.05).
Conclusion: Ointments prepared from OLE could decrease total bacterial count, decrease the inflammatory phase, and improve wound healing.
Keywords:
|   |   Full-Text (HTML)  (44 Views)  

References
1. Nagori BP, Solanki R. Role of medicinal plants in wound healing. Res J Med Plant. 2011;5(4):392-405. [Link] [DOI:10.3923/rjmp.2011.392.405]
2. Kumar B, Govindarajan M, Pusphagandan R. Ethanopharmacological approaches to wound healing-exploring medicinal plants of India. J Ethanopharmacol. 2007;114(2):103-13. [Link] [DOI:10.1016/j.jep.2007.08.010]
3. Adhav R, Mantry P, Darwhekar GN. Wound healing medicinal plant of India: A review. Int J Pharmacogn. 2015;2(1):6-10. [Link]
4. Strodtbeck F. Physiology of wound healing. Newborn Infant Nurs Rev. 2001;1(1):43-5. [Link] [DOI:10.1053/nbin.2001.23176]
5. Khezri K, Farahpour MR, Mounesi Rad S. Accelerated infected wound healing by topical application of encapsulated Rosemary essential oil into nanostructured lipid carriers. Artif Cells Nanomed Biotechnol. 2019;47:980-8. [Link] [DOI:10.1080/21691401.2019.1582539]
6. Negut I, Grumezescu V, Grumezescu AM. Treatment strategies for infected wounds. Molecules. 2018;23:2392. [Link] [DOI:10.3390/molecules23092392]
7. Mustoe TA, O'Shaughnessy K, Kloeters O. Chronic wound pathogenesis and current treatment strategies: A unifying hypothesis. Plast Reconstr Surg. 2006;117(7 Suppl):35S-41S. [Link] [DOI:10.1097/01.prs.0000225431.63010.1b]
8. Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, et al. Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair Regen. 2009;17(6):763-71. [Link] [DOI:10.1111/j.1524-475X.2009.00543.x]
9. Landen NX, Li D, Stahle M. Transition from inflammation to proliferation: A critical step during wound healing. Cell Mol Life Sci. 2016;73(20):3861-85. [Link] [DOI:10.1007/s00018-016-2268-0]
10. Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265sr6. [Link] [DOI:10.1126/scitranslmed.3009337]
11. Modarresi M, Farahpour MR, Baradaran B. Topical application of Mentha piperita essential oil accelerates wound healing in infected mice model. Inflammopharmacology. 2019;27:531-7. [Link] [DOI:10.1007/s10787-018-0510-0]
12. Farahpour MR, Vahid M, Oryan A. Effectiveness of topical application of ostrich oil on the healing of Staphylococcus aureus- and Pseudomonas aeruginosa-infected wounds. Connect. Tissue Res. 2018;59(3):212-22. [Link]
13. Meirinhos J, Silva BM, Valentão P, Seabra RM, Pereira JA, Dias A, et al. Analysis and quantification of flavonoidic compounds from Portuguese olive (Olea Europaea L.) leaf cultivars. Nat Prod Res. 2005;19(2):189-95. [Link] [DOI:10.1080/14786410410001704886]
14. Pereira AP, Ferreira IC, Marcelino F, Valentao P, Andrade PB, Seabra R, et al. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrancosa) leaves. Molecules. 2007;12(5):1153-62. [Link] [DOI:10.3390/12051153]
15. Elgebaly HA, Mosa NM, Allach M, El-massry KF, El-Ghorab AE, Al Hroob AM, et al. Olive oil and leaf extract prevent fluoxetine-induced hepatotoxicity by attenuating oxidative stress, inflammation and apoptosis. Biomed Pharmacother. 2018;98:446-53. [Link] [DOI:10.1016/j.biopha.2017.12.101]
16. Ahmed AU. An overview of inflammation: Mechanism and consequences. Front Biol. 2011;6(4):274-81. [Link] [DOI:10.1007/s11515-011-1123-9]
17. Garrett WS, Gordon JI, Glimber LH. Homeostasis and inflammation in the intestine. Cell. 2010;140(6):859-70. [Link] [DOI:10.1016/j.cell.2010.01.023]
18. Nathan C. Neutrophils and immunity: Challenges and opportunities. Nat Rev Immunol. 2006;6(3):173-82. [Link] [DOI:10.1038/nri1785]
19. Bielefeld KA, Amini-Nik S, Alman BA. Cutaneous wound healing: Recruiting developmental pathways for regeneration. Cell Mol Life Sci. 2013;6:1-23. [Link] [DOI:10.1007/s00018-012-1152-9]
20. Edwards R, Harding KG. Bacteria and wound healing. Curr Opin Infect Dis. 2004;17(2):91-6. [Link] [DOI:10.1097/00001432-200404000-00004]
21. Eo H, Lee H-J, Lim Y. Ameliorative effect of dietary genistein on diabetes induced hyper-inflammation and oxidative stress during early stage of wound healing in alloxan induced diabetic mice. Biochem Biophys Res Commun. 2016;478:1021-7. [Link] [DOI:10.1016/j.bbrc.2016.07.039]
22. Hozzeina WN, Badrc G, Al Ghamdid A, Sayede A, Al-Wailif NS, Garraudg O. Topical application of propolis enhances cutaneous wound healing by promoting TGF-Beta/smad-mediated collagen production in a streptozotocin-induced type I diabetic mouse model. Cell Physiol Biochem. 2015;37:940-54. [Link] [DOI:10.1159/000430221]
23. Kimmel AR, Brasaemle DL, McAndrews-Hill M, Sztalryd C, Londos C. Adoption of PERILIPINas a unifyin gnomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res. 2010;51:468-71. [Link] [DOI:10.1194/jlr.R000034]
24. Okuda K, Murata M, Sugimoto M, Saito Y, Kabasawa Y, Yoshie H, et al. TGF-beta1 influencese arlygingi val wound healing in rats: Animmuno- histochemical evaluation of stromal remodelling by extracellular matrix molecules and PCNA. J Oral Pathol Med. 1998;27:463-9. [Link] [DOI:10.1111/j.1600-0714.1998.tb01913.x]
25. Schmid P, Cox D, Bilbe G, McMaster G, Morrison C, Stähelin H, et al. TGF-betas and TGF-beta type II receptor in human epidermis: differential expression in acute and chronic skin wounds. J Pathol. 1993;171:191-7. [Link] [DOI:10.1002/path.1711710307]
26. Sato Y, Ohshima T, Kondo T. Regulatory role of endogenous interleukin-10 in cutaneous inflammatory response of murine wound healing. Biochem Biophys Res Commun. 1999;265(1):194-9. [Link] [DOI:10.1006/bbrc.1999.1455]
27. Gillitzer R, Goebeler M. Chemokines in cutaneous wound healing. J Leukocyte Biol. 2001;69(4):513-21. [Link] [DOI:10.1189/jlb.69.4.513]