Volume 3, Issue 1 (2024)                   GMJM 2024, 3(1): 7-11 | Back to browse issues page
Subject:

Print XML PDF HTML


History

How to cite this article
Rabinovich A, Romanoff N, Mordvinov D, Ivanov M. Effects of Oral Administration of Pulegone on Carbon Tetrachloride-Induced Oxidative Stress in Wistar Rats. GMJM 2024; 3 (1) :7-11
URL: http://gmedicine.de/article-2-243-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Pirogov Russian National Research Medical University, Moscow, Russia
2- Institute for Biomedical Research, Association of Pharmaceutical Research and Development, Kyiv, Ukraine
* Corresponding Author Address: Pirogov Russian National Research Medical University, Moscow, Russia. (nromanoff@gmail.com)
Abstract   (1150 Views)
Aims: Carbon tetrachloride (CCl4) has been applied to induce the toxicity and hepatic fibrosis. Natural antioxidants are known as efficient and safe treatments for hepatotoxicity compared with synthetic antioxidants. This study aimed to evaluate the effects of oral administration of pulegone in carbon tetrachloride-induced oxidative stress in Wistar rats.
Materials & Methods: Twenty rats were randomly assigned into four groups including control animals that received olive oil, Toxic control that administrated with 30% CCl4, Pulegone-20 & 30 that administrated with pulegone 20mg/kg and 30mg/kg, respectively, with in along to 30% CCl4. The liver levels of total cholesterol, triacylglycerides, phospholipids, superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione peroxidase (GPx), and vitamins C and E were evaluated.
Findings: Administration of CCl4 increased levels of cholesterol, triacylglycerides and lipid oxidation, but it also reduced levels of phospholipids, SOD, CAT, GSH, GPx, and vitamins C and E (p<0.05). Oral administration of pulegone, especially in the higher levels, could reverse negative effects of CCl4 (p<0.05).
Conclusion: Using pulegone is recommended for liver protection due to its vital therapeutic antioxidant properties.
Keywords:
|   |   Full-Text (HTML)  (39 Views)  

References
1. El-Boshy ME, Abdelhamidb F, Richab E, AshshiaA, Gaitha M, Qustya N. Attenuation of CCl4 induced oxidative stress, immunosuppressive, hepatorenal damage by Fucoidan in rats. J Clin Toxicol. 2017;7(3):1-7. [Link] [DOI:10.4172/2167-7972.1000348]
2. Goodla L, Manubolu MH, Pathakoti K, Jayakumar T, Sheu J, Fraker M, Tchounwou PB, et al. Protective effects of ammannia baccifera against CCl4induced oxidative stress in rats. Int J Environ Res Public Health. 2019;16(8):1440. [Link] [DOI:10.3390/ijerph16081440]
3. Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA. Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med. 2000;28(10):1456-62. [Link] [DOI:10.1016/S0891-5849(00)00252-5]
4. Kadri A, Zarai Z, Ben Chobba I, Bekir A, Gharsallah N, DamakM, et al. Chemical composition and antioxidant activity of Marrubium vulgare L. Essential oil from Tunisia. Afr J Biotechnol. 2011;10(19):3908-14. [Link]
5. Lavanya G, Voravuthikunchai SP, Towatana NH. Acetone extract from Rhodomyrtus tomentosa: A potent natural antioxidant. Evid Based Complementary Altern Med. 2012;2012:535479. [Link] [DOI:10.1155/2012/535479]
6. Jalilzadeh Amin G, Maham M, Dalir Naghadeh B, Kheiri F. Effects of Mentha longifolia essential oil on ruminal and abomasal longitudinal smooth muscle in sheep. J Essent Oil Res. 2012;24:61-9. [Link] [DOI:10.1080/10412905.2012.646019]
7. Turner GW, Croteau R. Organization of monoterpene biosynthesis in Mentha. Immunocytochemical localizations of geranyl diphosphate synthase, limonene-6-hydroxylase, isopiperitenol dehydrogenase, and pulegone reductase. Plant Physiol. 2004;136(4):4215-27. [Link] [DOI:10.1104/pp.104.050229]
8. Flamini G, Cioni PL, Puleio R, Morelli I, Panizzi L. Antimicrobial activity of the essential oil of Calamintha nepeta and its constituent pulegone against bacteria and fungi. Phytother Res. 1999;13(4):349-51. https://doi.org/10.1002/(SICI)1099-1573(199906)13:4<349::AID-PTR446>3.0.CO;2-Z [Link] [DOI:10.1002/(SICI)1099-1573(199906)13:43.0.CO;2-Z]
9. Torres-Martínez R, García-Rodríguez YM, Ríos-Chávez P, Saavedra-Molina A, López-Meza JE, Ochoa-Zarzosa A, et al. Antioxidant activity of the essential oil and its major terpenes of Satureja macrostema (Moc. and Sessé ex Benth.) Briq. Pharmacogn Mag. 2017;13(4):S875-80. [Link]
10. Cheraghali Z, Mohammadi R, Jalilzadeh-amin G. Planimetric and biomechanical study of local effect of pulegone on full thickness wound healing in rat. Malays J Med Sci. 2017;24(5):52-61. [Link] [DOI:10.21315/mjms2017.24.5.6]
11. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351-8. [Link] [DOI:10.1016/0003-2697(79)90738-3]
12. Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226(1):497-509. [Link] [DOI:10.1016/S0021-9258(18)64849-5]
13. Parekh AC, Jung DH. Cholesterol determination with ferric acetate-uranium acetate and sulfuric acid-ferrous sulfate reagents. Anal Chem. 1970;42(12):1423-7. [Link] [DOI:10.1021/ac60294a044]
14. Rice EW. Triglycerides in serum. In Standards Methods in Clinical Chemistry. New York: Academic Press; 1970. [Link]
15. Van Handel E. Suggested modifications of the micro determination of triglycerides. Clin Chem. 1961;7:249-51. [Link] [DOI:10.1093/clinchem/7.3.249]
16. Rouser G, Fkeischer S, Yamamoto A. Two dimensional then layer chromatographic separation of polarlipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970;5(5):494-6. [Link] [DOI:10.1007/BF02531316]
17. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170-5. [Link] [DOI:10.1016/S0021-9258(19)45228-9]
18. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-6. [Link] [DOI:10.1016/S0076-6879(84)05016-3]
19. Wendel A, Feuerstein S, Konz K-H. Acute paracetamol intoxication of starved mice leads to lipid peroxidation in vivo. Biochem Pharmacol. 1979;28(13):2051-5. [Link] [DOI:10.1016/0006-2952(79)90223-5]
20. Omaye ST, Turnbull JD, Sauberlich HE. Selected methods for the determination of ascorbic acid in animal cells, tissues, and fluids. Methods Enzymol. 1979;62:3-11. [Link] [DOI:10.1016/0076-6879(79)62181-X]
21. Naziroglu M, Karaoglu A, Aksoy AO. Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicol. 2004;195(2-3):221-30. [Link] [DOI:10.1016/j.tox.2003.10.012]
22. Joan O, Barbara AF, Qing X, Samuel WF. The identification of stem cells in human liver diseases and hepatocellular carcinoma. Exp Mol Pathol. 2010;88(3):331-40. [Link] [DOI:10.1016/j.yexmp.2010.01.003]
23. Basu S. Carbon tetrachloride-induced lipid peroxidation: Eicosanoid formation and their regulation by antioxidant nutrients. Toxicol. 2003;189(1-2):113-27. [Link] [DOI:10.1016/S0300-483X(03)00157-4]
24. Pathakoti K, Goodla L, Manubolu M, Tencomnao T. Metabolic alterations and the protective effect of punicalagin against glutamate-induced oxidative toxicity in HT22 cells. Neurotox Res. 2017;31(4):521-31. [Link] [DOI:10.1007/s12640-016-9697-2]
25. Koolen HHF, da Silva FMA, Gozzo FbC, de Souza AQL, de Souza ADL. Antioxidant, antimicrobial activities and characterization of phenolic compounds fromburiti (Mauritia flexuosa L. f.) by UPLC-ESI-MS/MS. Food Res Int. 2013;51(2):467-73. [Link] [DOI:10.1016/j.foodres.2013.01.039]
26. Lamb RG, Snyder JW, Coleman JB. New trends in the prevention of hepatocellular death. Modifiers of calcium movement and of membrane phospholipid metabolism. Boca Raton: CRC Press; 1988. [Link]
27. Coleman JB, Condie LW, Lamb RG. The influence of CCl4 biotransformation on the activation of rat liver phospholipase C in vitro. Toxicol Appl Pharmacol. 1988;95(2):200-7. [Link] [DOI:10.1016/0041-008X(88)90156-1]
28. Miesel R, Sanocka D, Kurpisz M, Kroger H. Antiinflammatory effects of NADPH oxidase inhibitors. Inflamm. 1995;19(3):347-62. [Link] [DOI:10.1007/BF01534392]
29. Aquilano K, Baldelli S, Ciriolo MR. Glutathione: New roles in redox signaling for an old antioxidant. Front Pharmacol. 2014;5:196. [Link] [DOI:10.3389/fphar.2014.00196]
30. Winkler BS. Unequivocal evidence in support of the nonenzymatic redox coupling between glutathione/glutathione disulfide and ascorbic acid/dehydroascorbic acid. Biochim Biophys Acta. 1992;1117(3):287-90. [Link] [DOI:10.1016/0304-4165(92)90026-Q]
31. Halliwell B, Gutteridge JM. Free radicals in biology and medicine. Oxford: Oxford University Press; 2007. [Link]