Volume 2, Issue 4 (2023)                   GMJM 2023, 2(4): 133-141 | Back to browse issues page
Article Type:
Analytical Review |
Subject:

Print XML PDF HTML


History

How to cite this article
Motiei F. Fuzzy Data Envelopment Analysis Method in Evaluating Supply Chain Efficiency in Medical Equipment. GMJM 2023; 2 (4) :133-141
URL: http://gmedicine.de/article-2-212-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
Authors F. Motiei *
Department of Industrial, Engineering, Arak Branch, Islamic Azad University, Arak, Iran
* Corresponding Author Address: Department of Industrial, Engineering, Arak Branch, Islamic Azad University, Arak, Iran (fatemoh1374@gmail.com)
Abstract   (724 Views)
Introduction: In recent years, supply chain management has become one of the most important areas in the field of production management due to the increasing competition in global markets. Supply chain management, as a tool that emerged in the early 1990s and includes planning and managing operations and production, transportation and distribution of goods to reach the customer, offers a way to improve the production environment and make it more competitive.  Managing the supply chain of medical consumables is one of the main challenges of hospitals and medical centers. Meanwhile, military hospitals need more serious attention in this regard due to their sensitive position. Many supply chain management techniques have been used in recent years, but there are still barriers to their widespread use.
Conclusion: As a general conclusion, this study shows that physicians are able to accurately diagnose dislocation and reduction in cases of non-fracture shoulder dislocations. Shoulder radiography should be requested at a time when the physician is unsure of the condition of the joint. In the first dislocation or with the mechanism of radiographic shock should be done before reduction.
 
Keywords:
|   |   Full-Text (HTML)  (249 Views)  

References
1. Beamon BM. Measuring supply chain performance. Int J Prod Manag. 1999;19(3):275-92. [Link] [DOI:10.1108/01443579910249714]
2. Beamon BM, Chen VC. Performance analysis of conjoined supply chains. Int J Prod Res. 2001;39(14):195-218. [Link] [DOI:10.1080/00207540110053156]
3. Chan FT. Performance measurement in a supply Chain. Int J Adv Manuf Technol. 2003;21:534-48. [Link] [DOI:10.1007/s001700300063]
4. Charnes A, Cooper WW, Rhodes E. Measuring the efficiency of decision making units. Eur J Oper Res. 1978;2(6):429-44. [Link] [DOI:10.1016/0377-2217(78)90138-8]
5. Chen Y, Liang L, Yang F. A DEA game model approach to supply chain efficiency. Ann Oper Res. 2006;145(1):5-13. [Link] [DOI:10.1007/s10479-006-0022-y]
6. Comelli M, Fenies P, Tchernev N. A combined financial and physical flows evaluation for logistic process and tactical production planning: Application in a company supply chain. Int J Prod Econ. 2008;112(1):77-95. [Link] [DOI:10.1016/j.ijpe.2007.01.012]
7. Estampe D, Lamouri S, Paris JL, Djelloul SB. A framework for analysing supply chain performance evaluation models. Int J Prod Econ. 2010;142(2):247-58. [Link] [DOI:10.1016/j.ijpe.2010.11.024]
8. Globerson S. Issues in developing a performance criteria system for an organization. Int J Prod Res. 1985;23(4):639-46. [Link] [DOI:10.1080/00207548508904734]
9. Gunasekaran A, Patel C, McGaughey RC. A framework for supply chain performance measurement. Int J Prod Econ. 2004;87(3):333-47. [Link] [DOI:10.1016/j.ijpe.2003.08.003]
10. Gunasekaran A, Patel C, Tirtiroglu E. Performance measures and metrics in a supply chain environment. Int J Oper Prod Manag. 2001;21(1/2):71-87. [Link] [DOI:10.1108/01443570110358468]
11. Guo P, Tanaka H. Fuzzy DEA: a perceptual evaluation method. Fuzzy Sets Syst. 2001;119(1):149-60. [Link] [DOI:10.1016/S0165-0114(99)00106-2]
12. Hwang YD, Lin YC, Jr JL. The performance evaluation of SCOR sourcing process-The case study of Taiwan's TFT-LCD industry. Int J Prod Econ. 2008;115(2):411-23. [Link] [DOI:10.1016/j.ijpe.2007.09.014]
13. Kojima M, Nakashima K, Ohno K. Performance evaluation of SCM in JIT environment. Int J Prod Econ. 2008;115(2):439-43. [Link] [DOI:10.1016/j.ijpe.2007.11.017]
14. Li D, O'Brien C. Integrated decision modelling of supply chain efficiency. Int J Prod Econ. 1999;59(1-3):14-57. [Link] [DOI:10.1016/S0925-5273(98)00097-8]
15. Liang L, Yang F, Cook WD, Zhu J. DEA models for supply chain efficiency evaluation. Ann Oper Res. 2006;145:35-49. [Link] [DOI:10.1007/s10479-006-0026-7]
16. Mapes J, New C, Szwejczewski M. Performance trade‐offs in manufacturing plants. Int J Oper Prod Manag. 1997;17(10):1020-33. [Link] [DOI:10.1108/01443579710177031]
17. Neely A, Gregory M, Platts K. Performance measurement system design: a literature review and research agenda. Int J Oper Prod Manag. 1995;15:80-116. [Link] [DOI:10.1108/01443579510083622]
18. Ross A, Droge C. An integrated benchmarking approach to distribution center performance using DEA modeling. J Oper Manag. 2002;20(1):19-32. [Link] [DOI:10.1016/S0272-6963(01)00087-0]
19. Talluri S, Narasimhan R, Nair A. Vendor performance with supply risk: A chance-constrained DEA approach. Int J Prod Econ. 2006;100(2):212-22. [Link] [DOI:10.1016/j.ijpe.2004.11.012]
20. Thomas DJ, Griffin PM. Coordinated supply chain management. Eur J Oper Res. 1996;94(1):1-15. [Link] [DOI:10.1016/0377-2217(96)00098-7]
21. Wen M, You C, Kang R. A new ranking method to fuzzy data envelopment analysis. Comput Math with Appl. 2010;59(11):3398-404. [Link] [DOI:10.1016/j.camwa.2010.02.034]
22. Wong WP, Wong KY. Supply chain performance measurement system using DEA modeling. Ind Manag Data Syst. 2007;107(3):361-81. [Link] [DOI:10.1108/02635570710734271]
23. Wu D, Olson DL. Supply chain risk, simulation, and vendor selection. Int J Prod Econ. 2008;114(2):645-55. [Link] [DOI:10.1016/j.ijpe.2008.02.013]
24. Xu J, Bin L, Wu D. Rough data envelopment analysis and its application to supply chain performance evaluation. Int J Prod Econ. 2009;122:628-38. [Link] [DOI:10.1016/j.ijpe.2009.06.026]