Volume 3, Issue 1 (2024)                   GMJM 2024, 3(1): 19-29 | Back to browse issues page
Article Type:
Original Research |
Subject:

Print XML PDF HTML


History

How to cite this article
Abbasinohoji F, Fazli M, Salehian F, Arabi A. Removal of Malachite Green from Aqueous Solution by LaMnO3 Nanorods as a High-Performance Adsorbent. GMJM 2024; 3 (1) :19-29
URL: http://gmedicine.de/article-2-215-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Department of Chemistry, Semnan University, Semnan, Iran
* Corresponding Author Address: Department of Chemistry, Semnan University, Semnan, Iran. (mfazli@semnan.ac.ir)
Abstract   (529 Views)
Aims: Utilizing inexpensive, non-toxic, wide outside face area as eco-friendly sorbent has been studied as a great replacement compound instead of high-priced toxic adsorbent stuff such as malachite green remover from wastewater.
Materials & Methods: LaMnO3 nanoparticles were used as a suitable adsorbent for malachite green removal from aqueous solutions. Adsorption values were investigated by changing contact time parameters, pH, temperature, adsorbent dosage, and initial dye concentration. Maximum adsorption capacity was 27.027mg.g-1 for 0.007g of LaMnO3. Various kinetic models were used to describe the kinetic data, and the first kinetic model was consistent with the results. The thermodynamic parameters of the LaMnO3 adsorption process, such as Gibbs free energy (ΔG0), standard enthalpy change (ΔH0), and standard entropy change (ΔS0), were calculated. All the chemicals were analytical grade and used without further purification. For LaMnO3, the following materials were used: H2O, La(NO3)3, MnCl2, and KMnO4, prepared via the hydrothermal method. The synthesized adsorbent was detected by FTIR, XRD, FESEM, and TEM analysis.
Findings: The process was spontaneous and endothermic due to the negative Gibbs free energy and the positive integrity of the enthalpy.
Conclusion: The adsorbent's performance in removing dyes from the aqueous medium has shown that it can be used as an effective and inexpensive adsorbent in treating a variety of colored sewage.
 
Keywords:
|   |   Full-Text (HTML)  (166 Views)  

References
1. Magdalane CM, Kaviyarasu K, Vijaya JJ, Jayakumar C, Maaza M, Jeyaraj B. Photocatalytic degradation effect of malachite green and catalytic hydrogenation by UV-illuminated Ceo2/Cdo multilayered nanoplatelet arrays: Investigation of antifungal and antimicrobial activities. J Photochem Photobiol B. 2017;169:110-23. [Link] [DOI:10.1016/j.jphotobiol.2017.03.008]
2. Pathania D, Katwal R, Sharma G, Naushad M, Rizwan Khan M, Ala'a H. Novel guar gum/Al2o3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye. Int J Biol Macromol. 2016;87:366-74. [Link] [DOI:10.1016/j.ijbiomac.2016.02.073]
3. Culp SJ, Beland FA. Malachite green: A toxicological review. J Am Coll Toxicol. 1996;15:219-38. [Link] [DOI:10.3109/10915819609008715]
4. Srivastava S, Sinha R, Roy D. Toxicological effects of malachite green. Aquat Toxicol. 2004;66(3):319-29. [Link] [DOI:10.1016/j.aquatox.2003.09.008]
5. Baeissa ES. Photocatalytic degradation of malachite green dye using Au/NaNbO3 nanoparticles. J Alloys Compd. 2016;672:564-70. [Link] [DOI:10.1016/j.jallcom.2016.02.024]
6. Guo X, Wei Q, Du B, Zhang Y, Xin X, Yan L, et al. Removal of basic dyes (Malachite green) from aqueous medium by adsorption onto amino functionalized graphenes in batch mode. Desalin Water Treat. 2015;53(3):818-25. [Link] [DOI:10.1080/19443994.2013.846239]
7. Tahir H, Hammed U, Sultan M, Jahanzeb Q. Batch adsorption technique for the removal of malachite green and fast green dyes by using montmorillonite clay as adsorbent. Afr J Biotechnol. 2010;9(48):8206-14. [Link] [DOI:10.5897/AJB10.911]
8. Saikia L, Bhuyan D, Saikia M, Malakar B, Kumar Dutta D, Sengupta P. Photocatalytic performance of Zno nanomaterials for self sensitized degradation of malachite green dye under solar light. Appl Catal A-Gen. 2015;490:42-9. [Link] [DOI:10.1016/j.apcata.2014.10.053]
9. Sharma S, Mehta SK, Kansal SK. N Doped Zno/C-dots nanoflowers as visible light driven photocatalyst for the degradation of malachite green dye in aqueous phase. J Alloys Compd. 2017;699:323-33. [Link] [DOI:10.1016/j.jallcom.2016.12.408]
10. Gong R, Zhang X, Liu H, Sun Y, Liu B. Uptake of cationic dyes from aqueous solution by biosorption onto granular Kohlrabi peel. Bioresource Technol. 2007;98(6):1319-23. [Link] [DOI:10.1016/j.biortech.2006.04.034]
11. Gouran-Orimi R, Mirzayi B, Nematollahzadeh A, Tardast A. Competitive adsorption of nitrate in fixed bed column packed with bio-inspired polydopamine coated zeolite. J Environ Chem Eng. 2018;6(2):2232-40. [Link] [DOI:10.1016/j.jece.2018.01.049]
12. Gupta S, Babu BV. Modeling, simulation, and experimental validation for continuous Cr (Vi) removal from aqueous solutions using sawdust as an adsorbent. Bioresource Technol. 2009;100(23):5633-40. [Link] [DOI:10.1016/j.biortech.2009.06.025]
13. Gupta VK, Ali I. Adsorbents for water treatment: Development of low-cost alternatives to carbon. Encycl Surf Colloid Sci. 2006;2:149-84. [Link]
14. Mavrogiorgou A, Simaioforidou A, Louloudi M. Pyrolytic Carbon as support matrix for heterogeneous oxidation catalysts: The influence of pyrolytic process on catalytic behavior. J Environ Chem Eng. 2018;6(1):1127-36. [Link] [DOI:10.1016/j.jece.2018.01.040]
15. Dolphen R, Sakkayawong N, Thiravetyan P, Nakbanpote W. Adsorption of reactive red 141 from wastewater onto modified chitin. J Hazard Mater. 2007;145(1-2):250-5. [Link] [DOI:10.1016/j.jhazmat.2006.11.026]
16. Ghaedi M, Khajehsharifi H, Hemmati Yadkuri A, Roosta M, Asghari A. Oxidized multiwalled carbon nanotubes as efficient adsorbent for bromothymol blue. Toxicol Environ Chem. 2012;94(5):873-83. [Link] [DOI:10.1080/02772248.2012.678999]
17. Tahir SS, Rauf N. Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay. Chemosphere. 2006;63(11):842-8. [Link] [DOI:10.1016/j.chemosphere.2005.10.033]
18. Sawood GM, Gupta SK. Arsenic remediation of the waste water using adsorbent: A review. Int J Eng Sci Technol. 2018;5(1):1054-70. [Link]
19. El Hadri A. Perovskitas hexagonales de hierro: Papel de la subred aniónica en la oxidación catalítica de CO. [Internet]. Madrid: UCM; 2017 [Cited 2021 May 17]. Available from: https://eprints.ucm.es/42589/ [Link]
20. Ghiasi M, Malekzadeh A. Synthesis, characterization and photocatalytic properties of lanthanum oxycarbonate, lanthanum oxide and lanthanum hydroxide nanoparticles. Superlattices Microstruct. 2015;77:295-304. [Link] [DOI:10.1016/j.spmi.2014.09.027]
21. Shaterian M, Enhessari M, Rabbani D, Asghari M, Salavati-Niasari M. Synthesis, characterization and photocatalytic activity of lamno3 nanoparticles. Appl Surf Sci. 2014;318:213-7. [Link] [DOI:10.1016/j.apsusc.2014.03.087]
22. Najjar H, Batis H. Development of Mn-based perovskite materials: Chemical structure and applications. Catal Rev. 2016;58(3):371-438. [Link] [DOI:10.1080/01614940.2016.1198203]
23. Özbay N, Yarbay Şahin RZ. Preparation and characterization of lamno3 and lanio3 perovskite type oxides by the hydrothermal synthesis method. AIP Conf Proc. 2017;1809(1). [Link] [DOI:10.1063/1.4975455]
24. Fruth V, Popa M, Calderon-Moreno J, Tenea E, Anastasescu M, Osiceanu P, et al. Perovskite type nanopowders and thin films obtained by chemical methods. Process Appl Ceram. 2010;4:167-82. [Link] [DOI:10.2298/PAC1003167F]
25. Jung WY, Hong SS. Synthesis of lacoo3 nanoparticles by microwave process and their photocatalytic activity under visible light irradiation. J Ind Eng Chem. 2013;19(1):157-60. [Link] [DOI:10.1016/j.jiec.2012.07.018]
26. Álvarez-Galván MC, VA de La Peña O'Shea, Arzamendi G, Pawelec B, Gandía LM, Fierro JL. Methyl ethyl ketone combustion over la-transition metal (Cr, Co, Ni, Mn) perovskites. Appl Catal B. 2009;92(3-4):445-53. [Link] [DOI:10.1016/j.apcatb.2009.09.006]
27. Arabi A, Fazli M, Ehsani MH. Synthesis and characterization of calcium-doped lanthanum manganite nanowires as a photocatalyst for degradation of methylene blue solution under visible light irradiation. J Mater Sci. 2018;41(77):1-8. [Link] [DOI:10.1007/s12034-018-1590-6]
28. Kong Q, He X, Shu L, Miao MS. Ofloxacin adsorption by activated carbon derived from luffa sponge: Kinetic, isotherm, and thermodynamic analyses. Process Saf Environ Prot. 2017;112:254-64. [Link] [DOI:10.1016/j.psep.2017.05.011]
29. Campos V, Dweck J, Nascimento CA, Tcacenco CM. Thermal stability of ionene polymers. J Therm Anal Calorim. 2013;112:1221-9. [Link] [DOI:10.1007/s10973-012-2694-7]
30. Malik UR, Hasany SM, Subhani MS. Sorptive potential of sunflower stem for cr(iii) ions from aqueous solutions and its kinetic and thermodynamic profile. Talanta. 2005;66(1):166-73. [Link] [DOI:10.1016/j.talanta.2004.11.013]
31. Fil BA, Karcioglu Karakas Z, Boncukcuiglu R, Yilmaz AE. Removal of cationic dye (basic red 18) from aqueous solution using natural Turkish Clay. Global Nest J. 2013;15:529-41. [Link] [DOI:10.30955/gnj.000944]
32. Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chem Eng. 2010;156(1):2-10. [Link] [DOI:10.1016/j.cej.2009.09.013]
33. Itodo AU, Abdulrahman FW, Hassan LG, Maigandi SA, Itodo HU. Intraparticle diffusion and intraparticulate diffusivities of herbicide on derived activated carbon. Research. 2010;2(2):74-86. [Link]
34. Chien SH, Clayton W. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci Soc Am J. 1980;44:265-8. [Link] [DOI:10.2136/sssaj1980.03615995004400020013x]
35. Tang H, Zhou W, Zhang L. Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels. J Hazard Mater. 2012;209-210:218-25. [Link] [DOI:10.1016/j.jhazmat.2012.01.010]
36. Yang R, Li D, Li A, Yang H. Adsorption properties and mechanisms of palygorskite for removal of various ionic dyes from water. Appl Clay Sci. 2018;151:20-8. [Link] [DOI:10.1016/j.clay.2017.10.016]