Volume 3, Issue 2 (2024)                   GMJM 2024, 3(2): 47-51 | Back to browse issues page



How to cite this article
Mesbahzadeh B, Garmsiri M, Jalalvand F, Shojaie L, Kakar M. Effect of Oral Menthol on Antioxidant Status of Polycystic Ovarian Syndrome-Induced Wister Rats. GMJM 2024; 3 (2) :47-51
URL: http://gmedicine.de/article-2-250-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
2- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
3- Department of General Surgery, Lorestan University of Medical Sciences, Khorramabad, Iran
4- Tehran University of Medical Sciences, Tehran, Iran
5- L&DD Department, Spinny Road Quetta, Balochistan, Pakistan
* Corresponding Author Address: Director Planning and Development, L & DD Department, Spinny Road Quetta, Balochistan, Pakistan. (adagul@gmail.com)
Abstract   (519 Views)
Aims: Polycystic ovarian syndrome has been related to dyslipidemia and suppression of antioxidant status. However, novel agents such as menthol can be an efficient strategy for alleviation of this syndrome. This study was conducted to evaluate the effects of different levels of menthol on blood biochemical parameters and antioxidant status in polycystic ovarian syndrome-induced Wistar rats.
Materials & Methods: In this experimental study, 50 Wistar rats were used in 5 groups; healthy (negative control), polycystic ovarian syndrome that did not receive any menthol (positive control), and polycystic ovarian syndrome that received 2- (PCOS-2), 4- (PCOS-4) and 6mg/kg of body weight of menthol (PCOS-6). To induce the polycystic ovarian syndrome, 5mg of estradiol valerate was administrated. At the end of the trial session, blood samples were taken to evaluate plasma concentrations of glucose, insulin, total cholesterol, triglycerides, HDL-C, LDL-C, ferric-reducing ability of plasma (FRAP), advanced oxidation protein product (AOPP) and total oxidation status (TOS).
Findings: Induction of polycystic ovarian syndrome increased glucose, insulin, total cholesterol, triglycerides, LDL-C, FRAP, AOPP and TOS, and decrease HDL-C. The use of menthol especially in higher levels improved the mentioned parameters. Polycystic ovarian syndrome also increased body weight and oral treatment of menthol helped to maintain the body weight.
Conclusion: Menthol improves antioxidant status in rats with polycystic ovarian syndrome. Thus, use of menthol is recommended for treatment of polycystic ovarian syndrome.

1. Patil S, Ramesh S, Murthy Kharidhi HS. A prospective analysis of polycystic ovarian syndrome in infertile women. Int J Reprod Contraception Obstetric Gynecol. 2019;8(1). [Link] [DOI:10.18203/2320-1770.ijrcog20185443]
2. El Hayek S, Bitar L, Hamdar LH, Mirza FG, Daoud G. Poly cystic ovarian syndrome: An updated overview. Front Physiol. 2016;7:124. [Link] [DOI:10.3389/fphys.2016.00124]
3. Kolivand M, Keramat A, Khosravi A. The effect of herbal teas of management of polycystic ovary syndrome: A systematic review. J Midwifery Reprod Health. 2017;5(4):1098-106. [Persian] [Link]
4. Wild RA. Cardiovascular disease risks, insulin resistance, and androgen excess. Semin Reprod Endocrinol. 1994;12:38-44. [Link] [DOI:10.1055/s-2007-1016380]
5. Birdsall MA, Farquhar CM, White HD. Association between polycystic ovaries and extent of coronary artery disease in women having cardiac catheterization. Ann. Int. Med. 1997;126(1):32-5. [Link] [DOI:10.7326/0003-4819-126-1-199701010-00005]
6. Stuart D, Nagamani M. Acute augmentation of plasma androstenedione and dehydroepiandrosterone by euglycemic insulin infusion: Evidence for a direct effect of insulin on ovarian steroidogenesis. Fertil Steril. 1990;54(5):788-92. [Link] [DOI:10.1016/S0015-0282(16)53931-4]
7. Fenkci V, Fenkci S, Yilmazer M, Serteser M. Decreased total antioxidant status and increased oxidative stress in women with polycystic ovary syndrome may contribute to the risk of cardiovascular disease. Fertil. Steril. 2003;80:123-7. [Link] [DOI:10.1016/S0015-0282(03)00571-5]
8. Sasikala SL, Shamila S. A novel ayurvedic medicine- asokarishtam in the treatment of letrozole induced pcos in rat. J Cell Tissue Res. 9(2):1903-7. [Link]
9. Oz M, El Nebrisi EG, Yang KS, Howarth FC, Al Kury LT. Cellular and molecular targets of menthol actions. Front Pharmacol. 2017;8:472. [Link] [DOI:10.3389/fphar.2017.00472]
10. Rozza AL, Meira de Faria F, Souza Brito AR, Pellizzon CH. The gastro-protective effect of menthol: Involvement of anti-apoptotic, antioxidant andanti-inflammatory activities. PloS. ONE. 2014;9:e86686. [Link] [DOI:10.1371/journal.pone.0086686]
11. Stringaro A, Colone M, Angiolella L. Antioxidant, antifungal, antibiofilm, and cytotoxic activities of Mentha spp. Essential Oils. Medicines (Basel). 2018;5:112-21. [Link] [DOI:10.3390/medicines5040112]
12. Stener Victorin E, Ploj K, Larsson BM, Holmang A. Rats with steroid-induced polycystic ovaries develop hypertension and increased sympathetic nervous system activity. Reprod Biol Endocrinol. 2005;3:44-51. [Link] [DOI:10.1186/1477-7827-3-44]
13. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power: The FRAP assay. Anal Biochem. 1996;239(1):70-6. [Link] [DOI:10.1006/abio.1996.0292]
14. Kim E, Jang M, Choi JH, Park KS, Cho I. An improved dehydroepiandrosterone-induced rat model of polycystic ovary syndrome (PCOS): Post-pubertal improve PCOS's features. Front. Endocrin. 2018;9:735. [Link] [DOI:10.3389/fendo.2018.00735]
15. Cavagni J, Wagner TP, Gaio EJ, Rego RO, Torres IL, et al. Obesity may increase the occurrence of spontaneous periodontal disease in Wistar rats. Arch Oral Biol. 2013;58:1034-9. [Link] [DOI:10.1016/j.archoralbio.2013.03.006]
16. Vignesh JP, Mohan V. Polycystic ovary syndrome: A component of metabolic syndrome?. J Postgrad Med. 2007;53:12-34. [Link] [DOI:10.4103/0022-3859.32217]
17. Boudreaux MY, Talbott EO, Kip KE, Brooks MM, Witchel SF. Risk of T2DM and impaired fasting glucose among PCOS subjects:results of an 8-year follow-up. Curr Diab Rep. 2006;6(1):77-83. [Link] [DOI:10.1007/s11892-006-0056-1]
18. Radha Maharjan H, Padamnabhi Nagar S, Laxmipriya Nampoothiri P. Effect of Aloe barbadensis Mill. formulation on Letrozole induced polycystic ovarian syndrome rat model. J Ayurveda Integ Med. 2010;1(4):273-9. [Link] [DOI:10.4103/0975-9476.74090]
19. Von Eckardstein A. Androgens, cardiovascular risk factors and atherosclerosis. Testosterone. 1998:229-57. [Link] [DOI:10.1007/978-3-642-72185-4_8]
20. Croston GE, Milan LB, Marschke KB, Reichman M, Briggs MR. Androgen receptor- mediated antagonism of estrogen-dependentlow density lipoprotein receptor transcription in cultured hepatocytes. Endocrinology. 1997;138(9):3779-86. [Link] [DOI:10.1210/endo.138.9.5404]
21. Ayala A, Munoz FM, Arguelles S. Lipid peroxidation: Production, metabolism and signalling mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative. Med Cell Longev. 2014;2014:360438. [Link] [DOI:10.1155/2014/360438]
22. Sabuncu T, Vural H, Harma M. Oxidative stress in polycystic ovary syndrome and its contribution to the risk of cardiovascular disease. Clin Biochem. 2001;34(5):407-13. [Link] [DOI:10.1016/S0009-9120(01)00245-4]
23. Liu J, Zhang D. The role of oxidative stress in pathogenesis of polycystic ovary syndrome. Sichuan Da Xue Xue Bao Yi Xue Ban. 2012;43(2):187-90. [Link]