Volume 3, Issue 2 (2024)                   GMJM 2024, 3(2): 59-63 | Back to browse issues page
Article Type:
Original Research |
Subject:

Print XML PDF HTML


History

How to cite this article
Sedighi S, Nasiri B, Alipoor R, MoradiKor N. Modulation of 6-Gingerolin Antidepressant-like Effects in Mice Model. GMJM 2024; 3 (2) :59-63
URL: http://gmedicine.de/article-2-253-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Tehran Medical Branch, Islamic Azad University, Tehran, Iran
2- Lorestan University of Medical Sciences, Khorramabad, Iran
3- Hormozgan University of Medical Sciences, Bandar Abbas, Iran
4- International Center for Neuroscience Research, Institute for Intelligent Research, Tbilisi, Georgia
* Corresponding Author Address: International Center for Neuroscience Research, Institute for Intelligent Research, Tbilisi, Georgia. (moradikor.nasroallah@yahoo.com)
Abstract   (500 Views)
Aims: It has been reported that ginger is involved in serotonergic system. It seems that ginger effect could be attributed to its active compound or gingerol. The present study was conducted to evaluate the effects of gingerol on antidepressant-like effects by investigation of serotonergic system in mice model.
Materials & Methods: In an experimental design, following pilot study and selection of doses, mice were divided into 4 groups. Receptor antagonists were injected, gingerol was administrated and a trial suspension test was conducted.
Findings: Gingerol could induce antidepressant-like effect (p<0.001), without induction of changes in spontaneous locomotor activity in the open-field test. Pretreatment of mice with pCPA (preventor of serotonin synthesis), WAY100135 (receptor antagonist), ketanserin (5HT2A receptor antagonist), and cyproheptadine (5HT2 receptor antagonist) prevented the antidepressant-like effect induced by the gingerol (p<0.05).
Conclusion: Gingerol is involved in antidepressant-like effects through serotonergic system in mice model.
 
Keywords:
   

References
1. Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62(6):617-27. [Link] [DOI:10.1001/archpsyc.62.6.617]
2. Kessler RC, Bromet EJ. The epidemiology of depression across cultures. Annu Rev Public Health. 2013;34:119-38. [Link] [DOI:10.1146/annurev-publhealth-031912-114409]
3. Wallace CJK, Milev R. The effects of probiotics on depressive symptoms in humans: A systematic review. Annu Gen Psychiatry. 2017;16:14. [Link] [DOI:10.1186/s12991-017-0138-2]
4. McCord JM. Human disease, free radicals, and the oxidant/antioxidant balance. Clin Biochem. 1993;26(5):351-7. [Link] [DOI:10.1016/0009-9120(93)90111-I]
5. Bouayed J, Rammal H, Soulimani R. Oxidative stress andanxiety relationship and cellular pathways. Oxidative Med Cell Longevity. 2009;2(2):63-7. [Link] [DOI:10.4161/oxim.2.2.7944]
6. Hovatta I, Juhila J, Donner J. Oxidative stress in anxiety and comorbid disorders. Neurosci Res. 2010;68(4):261-75. [Link] [DOI:10.1016/j.neures.2010.08.007]
7. Halliwell B. Oxidative stress and neurodegeneration: Where are we now?. J Neurochem. 2006;97(6):1634-58. [Link] [DOI:10.1111/j.1471-4159.2006.03907.x]
8. Berk M, Ng F, Dean O, Dodd S, Bush AI. Glutathione: Anovel treatment target in psychiatry. Trend Pharmacol Sci. 2008;29(7):346-51. [Link] [DOI:10.1016/j.tips.2008.05.001]
9. Maes M, Galecki P, Chang YS, Berk M. A reviewon the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (Neuro) degenerative processes in that illness. Progr Neuropsychopharmacol Biol Psychiatry. 2011;35(3):676-92. [Link] [DOI:10.1016/j.pnpbp.2010.05.004]
10. Scapagnini G, Davinelli S, Drago F, de Lorenzo A, Oriani G. Antioxidants as antidepressants: Fact or fiction?. CNS Drugs. 2012;26(6):477-90. [Link] [DOI:10.2165/11633190-000000000-00000]
11. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004;37(4):277-85. [Link] [DOI:10.1016/j.clinbiochem.2003.11.015]
12. Lucca G, Comim CM, Valvassori SS, Réus GZ, Vuolo F, Petronilho F, et al. Increased oxidative stress in submitochondrial particles into the brain of rats submitted to the chronic mild stress paradigm. J Psychiatr Res. 2009;43(9):864-9. [Link] [DOI:10.1016/j.jpsychires.2008.11.002]
13. Saenghong N. Zingiber officinale improves cognitive function of the middle-aged healthy women. Evid Based Complement Alternat Med. 2012;2012:383062. [Link] [DOI:10.1155/2012/383062]
14. Seo HB, Kwon TD, Song YJ. The effect of ginger extract ingestion and swimming exercise on insulin resistance and skeletal muscle antioxidant capacity and apoptosis in hyperglycemic rats fed a high-fructose diet. J Exerc Nutr Biochem. 2011;15(1):41-8. [Link] [DOI:10.5717/jenb.2011.15.1.41]
15. Surh, YJ. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat Res. 1999;428(1-2):305-27. [Link] [DOI:10.1016/S1383-5742(99)00057-5]
16. Yamahara J, Huang Q, Li Y, Xu L, Fujimura H. Gastrointestinal motility enhancing effect of ginger and its active constituents. Chem Pharm Bull (Tokyo). 1990;38(2):430-1 [Link] [DOI:10.1248/cpb.38.430]
17. Sharma SS, Gupta YK. Reversal of cisplatin-induced delay in gastric emptying in rats by ginger (Zingiber officinale). J Ethnopharmacol. 1998;62(1):49-55 [Link] [DOI:10.1016/S0378-8741(98)00053-1]
18. Lorke D. A new approach to practical acute toxicity. Arch Toxicol. 1983;54(4):275-89. [Link] [DOI:10.1007/BF01234480]
19. Kumar N, Kumar Gupta A. Wound-Healing Activity of Onosma hispidum (Ratanjot) in Normal and Diabetic Rats. J Herb Spice Med Plant. 2010;15(4):342-51. [Link] [DOI:10.1080/10496470903507924]
20. Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology (Berl). 1985;85(3):367-70. [Link] [DOI:10.1007/BF00428203]
21. Jesse CR, Wilhelm EA, Bortolatto CF, Nogueira CW. Evidence for the involvement of the noradrenergic system, dopaminergic and imidazoline receptors in the antidepressant-like effect of tramadol in mice. Pharmacol Biochem Behav. 2010;95(3):344-50. [Link] [DOI:10.1016/j.pbb.2010.02.011]
22. Voiculescu SE, Rosca AE, Zeca V, Zagrean L, Zagrean AM. Impact of maternal melatonin suppression on forced swim and tail suspension behavioral despair tests in adult offspring. J Med Life.2015;8(2):202-6. [Link]
23. Harkin A, Connor T, Walsh M, St John N, Kelly J. Serotonergic mediation of the antidepressant-like effects of nitric oxide synthase inhibitors. Neuropharmacology. 2003;44(5):616-23. [Link] [DOI:10.1016/S0028-3908(03)00030-3]
24. Tanyeri P, Buyukokuroglu ME, Mutlu O, Ulak G, Akar FY, Celikyurt IK, et al. Involvement of serotonin receptor subtypes in the antidepressant-like effect of beta receptor agonist Amibegron (SR 58611A): An experimental study. Pharmacol Biochem Behav. 2013;105:12-6. [Link] [DOI:10.1016/j.pbb.2013.01.010]
25. Gu L, Liu YJ, Wang YB, Yi LT. Role for monoaminergic systems in the antidepressant-like effect of ethanol extracts from Hemerocallis Citrina. J Ethnopharmacol. 2012;139(3):780-7. [Link] [DOI:10.1016/j.jep.2011.11.059]
26. Zheng M, Li Y, Shi D, Liu C, Zhao J. Antidepressant-like effects of flavonoids extracted from Apocynum Venetum leaves in mice: The involvement of monoaminergic system in mice. J Ethnopharmacol. 2013;147(1):108-13. [Link] [DOI:10.1016/j.jep.2013.02.015]
27. Brown RE, Corey SC, Moore AK. Differences in measures of exploration and fear in MHC-congenic C57BL/6J and B6-H-2K mice. Behav Gen. 1999;29:263-71. [Link] [DOI:10.1023/A:1021694307672]
28. Porsolt RD, Bertin A, Jalfre M. "Behavioural despair" in rats and mice: Strain differences and the effects of imipramine. Eur J Pharmacol. 1978;51(3):291-4. [Link] [DOI:10.1016/0014-2999(78)90414-4]
29. Berton O, Nestler EJ. New approaches to antidepressant drug discovery: Beyond monoamines. Nature Rev Neurosci. 2006;7(2):137-51. [Link] [DOI:10.1038/nrn1846]
30. Xu Y, Wang Z, You W, Zhang X, Li S, Barish PA, et al. Antidepressant-like effect of trans-resveratrol: Involvement of serotonin and noradrenaline system. Eur Neuropsychopharmacol. 2010;20(6):405-13. [Link] [DOI:10.1016/j.euroneuro.2010.02.013]
31. Risch SC, Nemeroff CB. Neurochemical alterations of serotonergic neuronal systems in depression. J Clin Psychiatry.1992;53:3-7 [Link]
32. Haider S, Khaliq S, Haleem DJ. Enhanced serotonergic neurotransmission in the hippocampus following tryptophan administration improves learning acquisition and memory consolidation in rats. Pharmacol Rep. 2007;59(1):53-7. [Link]
33. Celada P, Puig MV, Amargós Bosch M, Adell A, Artigas F. The therapeutic role of 5-HT 1A and 5-HT 2A receptors in depression. Psychiatry Neurosci. 2004;29(4):252-65. [Link]
34. Shrestha S, Hirvonen J, Hines CS, Henter ID, Svenningsson P, Pike VW, et al. Serotonin-1A receptors in major depression quantified using PET: Controversies, confounds, and recommendations. Neuroimage. 2012;59(4):3243-51. [Link] [DOI:10.1016/j.neuroimage.2011.11.029]
35. Machado DG, Bettio LE, Cunha MP, Capra JC, Dalmarco JB, Pizzolatti MG, et al. Antidepressant-like effect of the extract of Rosmarinus officinalis in mice: Involvement of the monoaminergic system. Prog Neuro Psychopharmacol Biol Psychiatr. 2009;33(4):642-50. [Link] [DOI:10.1016/j.pnpbp.2009.03.004]