Volume 4, Issue 2 (2025)                   GMJM 2025, 4(2): 71-75 | Back to browse issues page

Print XML PDF HTML


History

How to cite this article
Rostami Mehr S, Hossein Gholizadeh Salmani R, Abbasi-Maleki S, Rasheed S, Haghipanah M. Beneficial Effects of Exercise on Brain-Derived Neurotrophic Factor in Subjects with Alzheimer; a Systematic Review. GMJM 2025; 4 (2) :71-75
URL: http://gmedicine.de/article-2-262-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
2- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
3- Department of Medicine Emergency, Acharya Shree Bhikshu Hospital, Moti Nagar, New Delhi, India
4- International Center for Neuroscience Research, Institute for Intelligent Research, Tbilisi, Georgia
* Corresponding Author Address: International Center for Neuroscience Research, Institute for Intelligent Research, 15 Anton Katalikos Street, Tbilisi, Georgia. Postal Code: 0105 (motahareh.haghipanah@gmail.com)
Abstract   (947 Views)
Aims: There are treatments that seem to help maintain mental skills and reduce the effects of Alzheimer's disease. On the other hand, physical exercises can have a protective effect against deterioration. The level of BDNF decreases in AD, and the decrease in this factor is consistent with the decrease in hippocampal volume in this disease. This study aimed to evaluate the effects of exercises on Brain-Derived Neurotrophic Factor levels in patients with Alzheimer's.
Information & Methods: This study was conducted based on the PRISMA guidelines in 2023. English papers on the effects of exercises on BDNF levels in subjects with Alzheimer's were included. Unpublished papers, review papers, and studies with deficient information were not included. Keywords were searched in PubMed, Scopus, EuropePMC, Cochrane Central Database, Embase, and Web of Science databases. All the studies were managed with Endnote™ X9.2 software.  
Findings: Twelve papers were reviewed, comprising 4 human and 8 animal studies. The periods for human studies lasted 26 to 52 weeks. Animal studies lasted 4 to 13 weeks. The samples were collected from plasma in human studies, while most animal studies were conducted on the expression of BDNF in the hippocampus (n=6). Out of 12 papers, 3 human papers and 8 animal studies showed that exercises significantly increased the concentration of the expression of BDNF
Conclusion: Exercise positively improves and increases the expression and concentrations of Brain-Derived Neurotrophic Factor.  
 
Keywords:
|   |   Full-Text (HTML)  (161 Views)  

References
1. Bhushan I, Kour M, Kour G, Gupta S, Sharma S, Yadav A. Alzheimer's disease: Causes & treatment-A review. Ann Biotechnol. 2018;1(1):1002. [Link] [DOI:10.33582/2637-4927/1002]
2. Pradhan A, Gige J, Eliazer M. Detection of Alzheimer's disease (AD) in MRI images using deep learning. Int J Eng Res Technol. 2021;10(3):580-5. [Link]
3. Calvo-Rodriguez M, Bacskai BJ. Mitochondria and calcium in Alzheimer's disease: From cell signaling to neuronal cell death. Trends Neurosci. 2021;44(2):136-51. [Link] [DOI:10.1016/j.tins.2020.10.004]
4. Bergsland N, Dwyer MG, Jakimovski D, Weinstock‐Guttman B, Zivadinov R. Diffusion tensor imaging reveals greater microstructure damage in lesional tissue that shrinks into cerebrospinal fluid in multiple sclerosis. J Neuroimaging. 2021;31(5):995-1002. [Link] [DOI:10.1111/jon.12891]
5. Mirakhori F, Moafi M, Milanifard M, Tahernia H. Diagnosis and treatment methods in alzheimer's patients based on modern techniques: The orginal article. J PharmNegative Results. 2022;13(1):1889-907. [Link] [DOI:10.47750/pnr.2022.13.S01.226]
6. Van Crevel H. Clinical approach to dementia. Prog Brain Res. 1986;70:3-13. [Link] [DOI:10.1016/S0079-6123(08)64294-6]
7. Torregrossa W, Torrisi M, De Luca R, Casella C, Rifici C, Bonanno M, et al. Neuropsychological assessment in patients with traumatic brain injury: A comprehensive review with clinical recommendations. Biomedicines. 2023;11(7):1991. [Link] [DOI:10.3390/biomedicines11071991]
8. Chapman CA, Hasan O, Schulz PE, Martin RC. Evaluating the distinction between semantic knowledge and semantic access: Evidence from semantic dementia and comprehension-impaired stroke aphasia. Psychon Bull Rev. 2020;27(4)607-39. [Link] [DOI:10.3758/s13423-019-01706-6]
9. Barnard E. Neuropsychological assessment of driving abilities in patients with Alzheimer's disease or Parkinson's disease. Massachusetts: William James College; 2021. [Link]
10. Neel IC. Alzheimer's disease and other dementias, geriatric medicine: A person-centered evidence-based approach. New York: Springer; 2022. pp. 1-20. [Link] [DOI:10.1007/978-3-030-01782-8_84-1]
11. Ouerdane Y, El-Nahas ZS, Ouerdane F, Hamam KM, Ebada MA. Gut-brain axis in Alzheimer's disease: Interplay between cholecystokinin, dysbiosis, and brain-derived neurotrophic factor. In: Current thoughts on dementia: From risk factors to therapeutic interventions. New York: Springer; 2022. pp. 311-53. [Link] [DOI:10.1007/978-981-16-7606-2_12]
12. Sochal M, Ditmer M, Gabryelska A, Białasiewicz P. The role of brain-derived neurotrophic factor in immune-related diseases: A narrative review. J Clin Med. 2022;11(20):6023. [Link] [DOI:10.3390/jcm11206023]
13. Gabryelska A, Turkiewicz S, Ditmer M, Sochal M. Neurotrophins in the neuropathophysiology, course, and complications of obstructive sleep apnea-A narrative review. Int J Mol Sci. 2023;24(3):1808. [Link] [DOI:10.3390/ijms24031808]
14. Franzmeier N, Ren J, Damm A, Monté-Rubio G, Boada M, Ruiz A, et al. The BDNF Val66Met SNP modulates the association between beta-amyloid and hippocampal disconnection in Alzheimer's disease. Mol Psychiatry. 2021;26(2):614-28. [Link] [DOI:10.1038/s41380-019-0404-6]
15. Fang Y, Du N, Xing L, Duo Y, Zheng L. Evaluation of hippocampal volume and serum brain-derived neurotrophic factor as potential diagnostic markers of conversion from amnestic mild cognitive impairment to Alzheimer disease: A STROBE-compliant article. Medicine. 2019;98(30):e16604. [Link] [DOI:10.1097/MD.0000000000016604]
16. Gao L, Zhang Y, Sterling K, Song W. Brain-derived neurotrophic factor in Alzheimer's disease and its pharmaceutical potential. Transl Neurodegener. 2022;11(1):4. [Link] [DOI:10.1186/s40035-022-00279-0]
17. Zarneshan SN, Fakhri F, Khan H. Targeting Akt/CREB/BDNF signaling pathway by ginsenosides in neurodegenerative diseases: A mechanistic approach. Pharmacol Res. 12022;177:106099. [Link] [DOI:10.1016/j.phrs.2022.106099]
18. Li Q, Wu Y, Chen J, Xuan A, Wang X. Microglia and immunotherapy in Alzheimer's disease. Acta Neurologica Scandinavica. 2022;145(3):273-8. [Link] [DOI:10.1111/ane.13551]
19. Cunningham C, O'Sullivan R, Caserotti P, Tully MA. Consequences of physical inactivity in older adults: A systematic review of reviews and meta‐analyses. Scand J Med Sci Sports. 2020;30(5):816-27. [Link] [DOI:10.1111/sms.13616]
20. Farì G, Lunetti P, Pignatelli G, Raele MV, Cera A, Mintrone G, et al. The effect of physical exercise on cognitive impairment in neurodegenerative disease: From pathophysiology to clinical and rehabilitative aspects. Int J Mol Sci. 2021;22(21):11632. [Link] [DOI:10.3390/ijms222111632]
21. Park SS, Park HS, Kim CJ, Kang HS, Kim DH, Baek SS, Kim TW. Physical exercise during exposure to 40-Hz light flicker improves cognitive functions in the 3xTg mouse model of Alzheimer's disease. Alzheimer's Res Ther. 2020;12(62):1-15. [Link] [DOI:10.1186/s13195-020-00631-4]
22. Reycraft JT, Islam H, Townsend LK, Hayward GC, Hazell TJ, MacPherson RE. Exercise intensity and recovery on circulating brain-derived neurotrophic factor. Med Sci Sports Exerc. 2020;52(2):1210-7. [Link] [DOI:10.1249/MSS.0000000000002242]
23. García-Mesa Y, Pareja-Galeano H, Bonet-Costa V, Revilla S, Gómez-Cabrera MC, Gambini J, et al. Physical exercise neuroprotects ovariectomized 3xTg-AD mice through BDNF mechanisms. Psychoneuroendocrinology. 2014;45:154-66. [Link] [DOI:10.1016/j.psyneuen.2014.03.021]
24. Choi SH, Bylykbashi E, Chatila ZK, Lee SW, Pulli B, Clemenson GD, et al. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer's mouse model. Science. 2018;361(6406):eaan8821. [Link] [DOI:10.1126/science.aan8821]
25. Moher D, Liberati A, Tetzlaff J, Altman DG. Research methods & reporting-preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement-David Moher and colleagues introduce PRISMA, an update of the QUOROM guidelines for reporting systematic reviews and meta-analyses. BMJ. 2009;339:b2535. [Link] [DOI:10.1136/bmj.b2535]
26. Cooper H. Research synthesis and meta-analysis: A step-by-step approach. New York: Sage publications; 2015. [Link]
27. de Melo Coelho FG, Vital TM, Stein AM, Arantes FJ, Rueda AV, Camarini R,et al. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease. J Alzheimers Dis. 2014;39(2):401-8. [Link] [DOI:10.3233/JAD-131073]
28. Gaitán JM, Moon HY, Stremlau M, Dubal DB, Cook DB, Okonkwo OC, et al. Effects of aerobic exercise training on systemic biomarkers and cognition in late middle-aged adults at risk for Alzheimer's disease. Front Endocrinol. 2021;12:660181. [Link] [DOI:10.3389/fendo.2021.660181]
29. Nascimento CMC, Rodrigues Pereira J, Pires de Andrade L, Garuffi M, Leme Talib L, Vicente Forlenza O, et al. Physical exercise in MCI elderly promotes reduction of pro-inflammatory cytokines and improvements on cognition and BDNF peripheral levels. Curr Alzheimer Res. 2014;11(8):799-805. [Link] [DOI:10.2174/156720501108140910122849]
30. Håkansson K, Ledreux A, Daffner K, Terjestam Y, Bergman P, Carlsson R, et al. BDNF responses in healthy older persons to 35 minutes of physical exercise, cognitive training, and mindfulness: Associations with working memory function. J Alzheimers Dis. 2017;55(2);645-57. [Link] [DOI:10.3233/JAD-160593]
31. Koo JH, Kwon IS, Kang EB, Lee CK, Lee NH, Kwon MG, et al. Neuroprotective effects of treadmill exercise on BDNF and PI3-K/Akt signaling pathway in the cortex of transgenic mice model of Alzheimer's disease. J Exerc Nutrition Biochem. 2013;17():151. [Link] [DOI:10.5717/jenb.2013.17.4.151]
32. Naghibi S, Joneydi MS, Barzegari A, Davoodabadi A, Ebrahimi A, Eghdami E, et al. Treadmill exercise sex-dependently alters susceptibility to depression-like behaviour, cytokines and BDNF in the hippocampus and prefrontal cortex of rats with sporadic Alzheimer-like disease. Physiol Behav. 2021;241:113595. [Link] [DOI:10.1016/j.physbeh.2021.113595]
33. Özbeyli D, Sarı G, Özkan N, Karademir B, Yüksel M, Kaya OTC, et al. Protective effects of different exercise modalities in an Alzheimer's disease-like model. Behav Brain Res. 2017;328:159-77. [Link] [DOI:10.1016/j.bbr.2017.03.044]
34. Dao AT, Zagaar MA, Levine AT, Salim S, Eriksen JL, Alkadhi KA. Treadmill exercise prevents learning and memory impairment in Alzheimer's disease-like pathology. Curr Alzheimer Res. 2013;10(5):507-15. [Link] [DOI:10.2174/1567205011310050006]
35. Sim YJ. Treadmill exercise alleviates impairment of spatial learning ability through enhancing cell proliferation in the streptozotocin-induced Alzheimer's disease rats. J Exerc Rehabil. 2014;10(2):81-5. [Link] [DOI:10.12965/jer.140102]
36. Alkadhi KA, Dao AT. Exercise decreases BACE and APP levels in the hippocampus of a rat model of Alzheimer's disease. Mol Cell Neurosci. 2018;86:25-9. [Link] [DOI:10.1016/j.mcn.2017.11.008]
37. Kim BK, Shin MS, Kim CJ, Baek SB, Ko YC, Kim YP. Treadmill exercise improves short-term memory by enhancing neurogenesis in amyloid beta-induced Alzheimer disease rats. J Exerc Rehabil. 2014;10(1):2-8. [Link] [DOI:10.12965/jer.140086]
38. Lin TW, Shih YH, Chen SJ, Lien CH, Chang CY, Huang TY, et al. Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer's disease (APP/PS1) transgenic mice. Neurobiol Learn Memory. 2015;118:189-97. [Link] [DOI:10.1016/j.nlm.2014.12.005]
39. A.s. Association. 2015 Alzheimer's disease facts and figures. Alzheimers Dement. 2015;11(3):332-84. [Link] [DOI:10.1016/j.jalz.2015.02.003]
40. A.s. Association. 2017 Alzheimer's disease facts and figures. Alzheimer's & Dementia. 2017;13():325-73. [Link] [DOI:10.1016/j.jalz.2017.02.001]
41. Madhavan J, Anagha P, Vinod R, Aparna P. Dementia associated with seizure disorder-A case report. J Ayurveda Integrated Med Sci. 2020;5(2):282-7. [Link]
42. Abreu W, Tolson D, Jackson GA, Staines H, Costa N. The relationship between frailty, functional dependence, and healthcare needs among community‐dwelling people with moderate to severe dementia. Health Soc Care Community. 2019;27(3):642-53. [Link] [DOI:10.1111/hsc.12678]
43. Lovell MA, Markesbery WR. Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer's disease. Nucleic Acids Res. 2007;35(22):7497-504. [Link] [DOI:10.1093/nar/gkm821]
44. El Assar M, Angulo J, Rodríguez-Mañas L. Oxidative stress and vascular inflammation in aging. Free Radic Biol Med. 2013;65:380-401. [Link] [DOI:10.1016/j.freeradbiomed.2013.07.003]
45. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: A review. Reproductive Biol Endocrinol. 2012;10(49):1-31. [Link] [DOI:10.1186/1477-7827-10-49]
46. Pasinetti GM. Cyclooxygenase and inflammation in Alzheimer's disease: Experimental approaches and clinical interventions. J Neurosci Res. 1998;54(1):1-6. https://doi.org/10.1002/(SICI)1097-4547(19981001)54:1<1::AID-JNR1>3.0.CO;2-M [Link] [DOI:10.1002/(SICI)1097-4547(19981001)54:13.0.CO;2-M]
47. Zhang YH, Wang DW, Xu SF, Zhang S, Fan YG, Yang YY, et al. α-lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice. Redox Biol. 2018;14:535-48. [Link] [DOI:10.1016/j.redox.2017.11.001]
48. Daniela M, Catalina L, Ilie O, Paula M, Daniel-Andrei I, Ioana B. Effects of exercise training on the autonomic nervous system with a focus on anti-inflammatory and antioxidants effects. Antioxidants. 2022;11(2):350. [Link] [DOI:10.3390/antiox11020350]
49. Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard JP, Renard T, Rollan S, Taillandier P. Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory and antioxidant properties in kombucha tea extracts. Process Biochem. 2019;83:44-54. [Link] [DOI:10.1016/j.procbio.2019.05.004]
50. Magrone T, Magrone M, Russo MA, Jirillo E. Recent advances on the anti-inflammatory and antioxidant properties of red grape polyphenols: In vitro and in vivo studies. Antioxidants. 2019;9(1):35. [Link] [DOI:10.3390/antiox9010035]